B. Floyd, C. M. Roach, H. G. Dudding Edinburgh Student Journal of Science

Pressure Limiting Instabilities in Tokamaks

Benedict Floyd*! @, Colin M Roach? @, Harry G Dudding?

1 School of Physics and Astronomy, University of Edinburgh
2 UK Atomic Energy Authority

Open Access Abstract
Received The plasma pressure achievable in a tokamak fusion reactor may be limited
30 Jun 2025 by instabilities like the ideal ballooning mode, a pressure-driven instability

that acts to degrade plasma confinement. Here we investigate the sensitivity

TZVij'eT 2025 of the shape of the magnetic flux surface to the ideal ballooning mode; in

u particular, we modify the parameters describing the shape of magnetic flux
Accepted surfaces of the equilibrium and perform infinite-n ideal ballooning scans to
30 Jul 2025 assess how shaping affects proximity to marginal instability. We find that for
Published the parameter space considered, increasing squareness and elongation could
18 Sep 2025 help stabilise the plasma against the ideal ballooning mode instability.

DOI: 10.2218/esjs.10962 ISSN 3049-7930

Introduction

Magnetic confinement fusion is a method used by tokamaks to maintain and control high-pressure plasma,
with the ultimate goal of generating virtually limitless energy through nuclear fusion. In tokamaks, the
magnetic field is helical around the torus due to the superposition of the poloidal (running around the
plasma cross-section) and toroidal (running around the tokamak) magnetic fields. An important tokamak
parameter is 3, the ratio of plasma pressure p to magnetic field pressure, given by 8 = 2juop/B?, where p
is the vacuum permeability and B is the magnetic field strength. While high g is desirable for efficiency,
[ is often limited by various instabilities in the plasma.

One type of pressure-driven electromagnetic instability is the ideal ballooning mode (Connor et al. 1978;
Connor et al. 1979; Dewar et al. 1982). It is thought that this pressure-driven instability is important
in high confinement (H-mode) plasmas, which is when the plasma is heated to reach a new regime
of enhanced confinement. Specifically, this pressure-driven instability is of particular interest near the
pedestal, a region of steep pressure gradient at the edge of the plasma that appears in H-mode (ASDEX
Team 1989; Snyder et al. 2011; Dickinson et al. 2012). This study aimed to explore the impact of
shaping of tokamak magnetic equilibria on ideal ballooning stability in H-mode plasmas, using data from
the MAST and MAST Upgrade (MAST-U) spherical tokamaks at the UK Atomic Energy Authority
(UKAEA).

Theory

This analysis utilises ideal magnetohydrodynamics (ideal MHD), a description of the plasma as a single
fluid assuming quasineutrality and neglecting resistivity (Freidberg 2014). For axisymmetric equilibria,
the magnetic field lines lie on nested toroidal magnetic flux surfaces of constant pressure (Wesson 2011).
In equilibrium:

jxB=Vp, (1)

where j is the current density and B is the magnetic field. Equation 1 shows that there is no pressure
gradient Vp along the magnetic field lines. The equilibrium for an axisymmetric ideal MHD system can
alternatively be written as the Grad-Shafranov differential equation (Wesson 2011). The solution to this
equation gives the toroidal current density and poloidal magnetic field across the plasma equilibrium,
allowing the calculation of the local equilibria on any flux surface in the plasma.
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The ideal ballooning equation can be used to determine if the plasma on a specific flux surface is stable
to the ideal ballooning mode. We describe the perturbation from equilibrium with the local displacement
vector &(r, t), which represents the displacement of the plasma from its equilibrium position as a function
of space (r) and time (¢). The derivation of the ideal ballooning equation (Roach 2023; Cowley 2024)
decomposes the perturbations as Fourier modes to be of the form & = e~ ¢S é where w is frequency, n
is the mode number and S is the field line label in a field-aligned coordinate system (Dudding 2022). In
this analysis, we take the limit of n — oo and assume incompressible perturbations. The ideal ballooning
equation is an equation of motion which, when solved, gives us w?. If we find w? < 0 then w must be
imaginary so that an unstable eigenmode solution (i.e. an instability) exists that grows exponentially
in time by extracting energy from the pressure gradient and magnetic field curvature, thereby limiting
plasma confinement.

Methods

Local Equilibrium

The balance between the local forces on the plasma (Equation 1) maintains plasma equilibrium, which
can be described as a set of magnetic flux surfaces. Equilibrium reconstruction for a tokamak experiment
is carried out by solving the Grad-Shafranov equation on a 2D rectangular grid at a constant toroidal
angle in the poloidal plane, essentially taking a cross-section of the plasma in the torus. The equation
is solved numerically using Equilibrium reconstruction and fitting code (EFIT) (Lao et al. 1985) and
experimental measurements (Wesson 2011) as constraints to the solution. For the small scale, highly
localised instabilities studied here (n = o0), only the details of the plasma from an extremely narrow
layer around a given flux surface are needed.

We take the full 2D equilibrium reconstructions from EFIT and use pyrokinetics code (Patel et al. 2024) to
extract information from the specified flux surfaces. This approach utilises an analytic parameterisation
(Miller et al. 1998; Dudding 2022) of the flux surface shape, giving us the Miller flux surface shaping
parameters. The parameters we will focus on for this study include the elongation x,s, triangularity &y,
and squareness (py (Turnbull et al. 1999). The radial derivatives of these parameters are fit using the
Grad-Shafranov solution to derive flux surface plots (Figure 1la, ¢, and e).

Ballooning Solver

Pyrokinetics (Pyro; Patel et al. 2024) is a Python package written to standardise calculations of small-
scale instabilities in tokamak plasmas. The infinite-n ideal ballooning solver in pyrokinetics was developed
by Rahul Gaur (Gaur et al. 2023) using an adjoint-based method that solves the derivatives of the
ballooning equation with respect to all inputs of the system (Giannakoglou et al. 2008). This project
uses Pyro to extract the relevant information from EFIT, compute the Miller parameters for local flux
surfaces (using an optimisation algorithm), calculate the full local equilibrium, and finally use all of this
data in the ballooning solver to solve for w?.

It is important to note that the ballooning equation solves for stability only within a localised volume
near a specified flux surface, and that the stability of the ideal ballooning mode varies with flux surface,
which we label with the normalised poloidal flux ¥n. To analyse the stability of the ideal ballooning
mode across the whole plasma cross-section we applied the solver over a range of flux surfaces, with data
for each surface taken from a global Grad-Shafranov equilibrium solution.

The experimental tokamak plasmas we are examining are not expected to be maintained in a state
unstable to ideal ballooning because, if unstable, the ideal ballooning mode causes transport losses of
matter and energy that reduces the local pressure gradient to a point where the mode becomes stable
again. It is believed that these instabilities limit the size of the pressure gradient possible in certain
circumstances, for example in the pedestal of H-mode plasmas. It is particularly interesting to assess
the proximity of local equilibria to the stability boundary (where w? = 0) of the ideal ballooning mode.
We can do this by computing w? for a range of a parameter that defines the local equilibrium. The
ideal ballooning mode is driven by the pressure gradient so it is typical to vary the normalised pressure
gradient, 8’ (defined as 8’ = % where 1 is the radial coordinate) to assess proximity to marginal stability.
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Equilibrium plots with changing squareness
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Equilibrium plots with changing triangularity
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Figure 1: (a), (c), (e): flux surface ¢y = 0.97 for MAST shot 30422 at 326ms, where the solid black
line is the Miller parameter fit to the experimental data and the dashed lines are the modified shaping
parameters where all other geometry parameters are held to their original values. (b), (d), (f): 8’ against
shaping parameter (s (b), ks (d), and 6y, (e) with experimental values as blue dots, the boundary of
stability as red crosses and the original shaping and corresponding 3’ parameter for the flux surface as
a red dot. Plot (b) at (3 = 0.2 does not have a corresponding critical 5’ value as there is no limit with
these particular experimental parameters when only increasing f’.
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Choice of Experimental Run

The experimental run we choose to analyse in this study is MAST’s 30422. This experimental discharge
(shot) is used in a previous study of pedestal stability regimes (Imada et al. 2024), which analyses
the differences in stability to the ballooning mode between MAST and MAST-U plasmas and mainly
discusses finite-n MHD ballooning modes. Here we expand on that work by exploring n = oo ballooning
modes in more detail.

We analyse the 326 ms time slice because time trace analysis for this shot suggests that the plasma is
most stable at that time. Pressure profile analysis indicates that the plasma is operating in H-mode due
to the presence of the pedestal at roughly ¥ = 0.95. The surface at 0.97 has the highest experimental
B and by making /3’ scans across the plasma cross-section, we can see that it is one of the closest flux
surfaces to the limit of stability, making it a good candidate for analysis.

Results

We next explore how shaping can influence the sensitivity of ideal ballooning modes by varying the
shaping parameters o7, kas, (ar of flux surface ¥y = 0.97. Figure 1 suggests that increasing (s and
ks shifts the stability boundary to higher 8’ values and therefore acts to make n = oo ideal ballooning
modes more stable. This aligns with a similar analysis we carried out on the MAST-U discharge 45272,
which itself has higher kj; and (p; values. Here, a higher pedestal and an increased stability against the
ideal ballooning mode was observed when compared to the MAST discharge.

Discussion

A limitation of this study is that such shaping scans are difficult to replicate in experimental plasmas
and, generally, only the plasma boundary shape can be directly modified by tweaking the toroidal and
poloidal field coils. Furthermore, the internal local flux surfaces must self-consistently satisfy the Grad-
Shafranov equation for a given boundary shape, which we do not take into account as we only focus
on one surface. Future directions for this work include exploring ideal ballooning mode sensitivity to
shaping of the last closed flux surface using fully self-consistent Grad-Shafranov solutions to analyse the
full range of flux surfaces for a given time slice (which would be more comparable to experimental data).

Conclusion

This project explored the potential of using the ideal ballooning analysis to inform designers of future
tokamaks which shapes of magnetic flux surfaces may be more favourable than others. Local ballooning
analysis supports the notion that shaping, especially squareness and elongation, is related to the higher
performing pedestals recorded in MAST-U compared to those of MAST. Specifically, it seems to be
the increase of squareness and elongation that moves the marginal stability boundary away from the
experimental equilibria, thus potentially leading to improved plasma confinement. There was insufficient
time to rigorously test whether this method or the extracted conclusions are consistent with observed
tokamak plasmas as the shaping study used toy models of the plasma which have not been compared to
real discharges. Future work should consider an extended parameter space to understand the generality
of these observations, as well as analyse globally consistent solutions of the Grad-Shafranov equation.
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